Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Investig Med High Impact Case Rep ; 11: 23247096221150729, 2023.
Article in English | MEDLINE | ID: covidwho-20235349

ABSTRACT

Central venous catheters (CVCs), regarded as lines of life, are helpful in hemodynamic monitoring and delivering medications to patients. However, there are several complications that can result from the placement of CVCs. This includes accidental arterial puncture, which has a temporal association with hemorrhage, hematoma, and stroke. Infusion of vasopressors through such a mispositioned arterial CVC further increases the risk of these complications with potential end-organ ischemia. Here, we discuss the case of a 76-year-old woman who developed a myocardial infarction, heart failure, and subarachnoid hemorrhage following the arterial infusion of vasopressors through a malpositioned CVC.


Subject(s)
Central Venous Catheters , Myocardial Infarction , ST Elevation Myocardial Infarction , Female , Humans , Aged , Hemorrhage , Hematoma
2.
Brain Behav Immun Health ; 28: 100600, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2220464

ABSTRACT

Epidemiological data suggest that physical activity protects against severe COVID-19 and improves clinical outcomes, but how exercise augments the SARS-CoV-2 viral immune response has yet to be elucidated. Here we determine the antigen-specific CD4 and CD8 T-cell and humoral immunity to exercise in non-vaccinated individuals with natural immunity to SARS CoV-2, using whole-blood SARS-CoV-2 peptide stimulation assays, IFN-γ ELISPOT assays, 8-color flow cytometry, deep T-cell receptor (TCR) ß sequencing, and anti-RBD-1 neutralizing antibody serology. We found that acute exercise reliably mobilized (∼2.5-fold increase) highly functional SARS-CoV-2-specific T-cells to the blood compartment in those with natural immunity to the virus. The mobilized cells reacted with spike protein (including alpha (α) and delta (δ)-variants), membrane, and nucleocapsid peptides in those previously infected but not in controls. Both groups reliably mobilized T-cells reacting with Epstein-Barr viral peptides. Exercise mobilized SARS-CoV-2 specific T-cells maintained broad TCR-ß diversity with no impact on CDR3 length or V and J family gene usage. Exercise predominantly mobilized MHC I restricted (i.e. CD8+) SARS-CoV-2 specific T-cells that recognized ORF1ab, surface, ORF7b, nucleocapsid, and membrane proteins. SARS-CoV-2 neutralizing antibodies were transiently elevated ∼1.5-fold during exercise after infection. In conclusion, we provide novel data on a potential mechanism by which exercise could increase SARS-CoV-2 immunosurveillance via the mobilization and redistribution of antigen-specific CD8 T-cells and neutralizing antibodies. Further research is needed to define the tissue specific disease protective effects of exercise as SARS-CoV-2 continues to evolve, as well as the impact of COVID-19 vaccination on this response.

3.
Nature ; 609(7929): 994-997, 2022 09.
Article in English | MEDLINE | ID: covidwho-1991628

ABSTRACT

Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses1-4. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral evolution5. Here, we use a new phylogenomic method to search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. In a 1.6 million sample tree from May 2021, we identify 589 recombination events, which indicate that around 2.7% of sequenced SARS-CoV-2 genomes have detectable recombinant ancestry. Recombination breakpoints are inferred to occur disproportionately in the 3' portion of the genome that contains the spike protein. Our results highlight the need for timely analyses of recombination for pinpointing the emergence of recombinant lineages with the potential to increase transmissibility or virulence of the virus. We anticipate that this approach will empower comprehensive real-time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.


Subject(s)
COVID-19 , Genome, Viral , Pandemics , Phylogeny , Recombination, Genetic , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Genome, Viral/genetics , Humans , Mutation , Recombination, Genetic/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Selection, Genetic/genetics , Spike Glycoprotein, Coronavirus/genetics , Virulence/genetics
4.
J Appl Physiol (1985) ; 132(2): 275-282, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1562168

ABSTRACT

Athletes are advised to receive the COVID-19 vaccination to protect themselves from SARS-CoV-2 infection during major competitions. Despite this, many athletes are reluctant to get the COVID-19 vaccine due to concerns that symptoms of vaccinosis may impair athletic performance. This study aimed to determine the effects of COVID-19 vaccination on the physiological responses to graded exercise. Healthy physically active participants completed a 20-min bout of graded cycling exercise at intensities corresponding to 50%, 60%, 70%, and 80% of the predetermined V̇O2max before and ∼21 days after receiving the COVID-19 vaccine (2-dose Pfizer mRNA or 1-dose Johnson & Johnson). Vaccination had no effect on a large number of physiological responses to exercise measured in blood (e.g., lactate, epinephrine, and cortisol) and by respiratory gas exchange (e.g., oxygen uptake, CO2 production, ventilation, respiratory exchange ratio, predicted V̇O2max, and ventilatory threshold) (P > 0.05). We did, however, find significant elevations in heart rate (∼5 beats/min) and norepinephrine (P = 0.006 and 0.04, respectively) in response to vigorous (i.e., 70%-80% V̇O2max) intensity exercise after vaccination, particularly in those who received the two-shot Pfizer mRNA vaccine regimen. These findings held true when compared with demographically matched controls who completed identical bouts of exercise several weeks apart without receiving a vaccine; delta values for heart rate (P = 0.03) and norepinephrine (P = 0.01) were elevated in the second trial for those who received the Pfizer mRNA vaccine compared with the controls at the 70% and 80% V̇O2max stages, respectively. Recent COVID-19 vaccination has minimal effects on the physiological responses to graded exercise in physically active healthy people. The small elevations in cardiovascular and neuroendocrine responses to exercise after the Pfizer mRNA vaccine regimen could have implications for athletes at the elite level and warrants investigation.NEW & NOTEWORTHY Recent COVID-19 vaccination does not affect a large number of physiological responses to graded exercise, indicating that vaccination is unlikely to impair exercise capacity in normal healthy people. Heart rate and norepinephrine levels were elevated in response to exercise after the two-dose Pfizer mRNA vaccination compared to controls. Small elevations in cardiovascular and neuroendocrine responses to exercise after recent COVID-19 vaccination could have implications for exercise performance in elite athletes and warrants investigation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
5.
Brain Behav Immun Health ; 18: 100343, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1401236

ABSTRACT

Evidence is emerging that exercise and physical activity provides protection against severe COVID-19 disease in patients infected with SARS-CoV-2, but it is not known how exercise affects immune responses to the virus. A healthy man completed a graded cycling ergometer test prior to and after SARS-CoV-2 infection, then again after receiving an adenovirus vector-based COVID-19 vaccine. Using whole blood SARS-CoV-2 peptide stimulation assays, IFN-γ ELISPOT assays, flow cytometry, ex vivo viral-specific T-cell expansion assays and deep T-cell receptor (TCR) ß sequencing, we found that exercise robustly mobilized highly functional SARS-CoV-2 specific T-cells to the blood compartment that recognized spike protein, membrane protein, nucleocapsid antigen and the B.1.1.7 α-variant, and consisted mostly of CD3+/CD8+ T-cells and double-negative (CD4-/CD8-) CD3+ T-cells. The magnitude of SARS-CoV-2 T-cell mobilization with exercise was intensity dependent and robust when compared to T-cells recognizing other viruses (e.g. CMV, EBV, influenza). Vaccination enhanced the number of exercise-mobilized SARS-CoV-2 T-cells recognizing spike protein and the α-variant only. Exercise-mobilized SARS-CoV-2 specific T-cells proliferated more vigorously to ex vivo peptide stimulation and maintained broad TCR-ß diversity against SARS-CoV-2 antigens both before and after ex vivo expansion. Neutralizing antibodies to SARS-CoV-2 were transiently elevated during exercise after both infection and vaccination. Finally, infection was associated with an increased metabolic demand to defined exercise workloads, which was restored to pre-infection levels after vaccination. This case study provides impetus for larger studies to determine if these immune responses to exercise can facilitate viral clearance, ameliorate symptoms of long COVID syndrome, and/or restore functional exercise capacity following SARS-CoV-2 infection.

6.
J Econ Behav Organ ; 189: 443-469, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1340704

ABSTRACT

This paper studies how inflation beliefs reported in the New York Fed's Survey of Consumer Expectations have evolved over the first six months of the Covid-19 pandemic. We find that household inflation expectations responded slowly and mostly at the short-term horizon. In contrast, the data reveal immediate and unprecedented increases in individual inflation uncertainty and in inflation disagreement across respondents. Consistent with precautionary saving, the rise in inflation uncertainty is shown to be associated with how respondents used the stimulus checks they received as part of the 2020 CARES Act. We also find evidence of a strong polarization in inflation beliefs and we identify differences across demographic groups.

SELECTION OF CITATIONS
SEARCH DETAIL